Calculates absolute bias, variance, mean squared error (mse) and root mean squared error (rmse). The function also calculates the associated Monte Carlo standard errors.
Usage
calc_absolute(
data,
estimates,
true_param,
criteria = c("bias", "variance", "stddev", "mse", "rmse"),
winz = Inf
)
Arguments
- data
data frame or tibble containing the simulation results.
- estimates
vector or name of column from
data
containing point estimates.- true_param
vector or name of column from
data
containing corresponding true parameters.- criteria
character or character vector indicating the performance criteria to be calculated, with possible options
"bias"
,"variance"
,"stddev"
,"mse"
, and"rmse"
.- winz
numeric value for winsorization constant. If set to a finite value, estimates will be winsorized at the constant multiple of the inter-quartile range below the 25th percentile or above the 75th percentile of the distribution. For instance, setting
winz = 3
will truncate estimates that fall below P25 - 3 * IQR or above P75 + 3 * IQR.
Value
A tibble containing the number of simulation iterations, performance criteria estimate(s) and the associated MCSE.
Examples
calc_absolute(data = t_res, estimates = est, true_param = true_param)
#> # A tibble: 1 × 11
#> K_absolute bias bias_mcse var var_mcse stddev stddev_mcse mse
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1000 0.00233 0.00638 0.0407 0.00183 0.202 0.00457 0.0407
#> # ℹ 3 more variables: mse_mcse <dbl>, rmse <dbl>, rmse_mcse <dbl>