Skip to contents

Performance Criteria and MCSE

Functions for calculating performance critieria and MCSE

calc_absolute()
Calculate absolute performance criteria and MCSE
calc_relative()
Calculate relative performance criteria and MCSE
calc_relative_var()
Calculate jack-knife Monte Carlo SE for variance estimators
calc_rejection()
Calculate rejection rate and MCSE
calc_coverage()
Calculate confidence interval coverage, width and MCSE

Simulating bootstrap processes

Specialized functions for simulations involving bootstrap hypothesis tests or bootstrap confidence intervals

bootstrap_pvals()
Calculate one or multiple bootstrap p-values
bootstrap_CIs()
Calculate one or multiple bootstrap confidence intervals
extrapolate_rejection()
Extrapolate coverage and width using sub-sampled bootstrap confidence intervals.
extrapolate_coverage()
Extrapolate coverage and width using sub-sampled bootstrap confidence intervals.

Simulation Workflow

Functions for facilitating simulation workflows

create_skeleton()
Open a simulation skeleton
repeat_and_stack()
Repeat an expression multiple times and (optionally) stack the results.
bundle_sim()
Bundle functions into a simulation driver function
evaluate_by_row()
Evaluate a simulation function on each row of a data frame or tibble

Example Datasets

Example datasets from simulation studies

Tipton_Pusto
Results for Figure 2 of Tipton & Pustejovsky (2015)
alpha_res
Cronbach's alpha simulation results
t_res
t-test simulation results
welch_res
Welch t-test simulation results