Function reference
-
calc_absolute()
- Calculate absolute performance criteria and MCSE
-
calc_relative()
- Calculate relative performance criteria and MCSE
-
calc_relative_var()
- Calculate jack-knife Monte Carlo SE for variance estimators
-
calc_rejection()
- Calculate rejection rate and MCSE
-
calc_coverage()
- Calculate confidence interval coverage, width and MCSE
Simulating bootstrap processes
Specialized functions for simulations involving bootstrap hypothesis tests or bootstrap confidence intervals
-
bootstrap_pvals()
- Calculate one or multiple bootstrap p-values
-
bootstrap_CIs()
- Calculate one or multiple bootstrap confidence intervals
-
extrapolate_rejection()
- Extrapolate coverage and width using sub-sampled bootstrap confidence intervals.
-
extrapolate_coverage()
- Extrapolate coverage and width using sub-sampled bootstrap confidence intervals.
-
create_skeleton()
- Open a simulation skeleton
-
repeat_and_stack()
- Repeat an expression multiple times and (optionally) stack the results.
-
bundle_sim()
- Bundle functions into a simulation driver function
-
evaluate_by_row()
- Evaluate a simulation function on each row of a data frame or tibble
-
Tipton_Pusto
- Results for Figure 2 of Tipton & Pustejovsky (2015)
-
alpha_res
- Cronbach's alpha simulation results
-
t_res
- t-test simulation results
-
welch_res
- Welch t-test simulation results