Package index
-
calc_absolute() - Calculate absolute performance criteria and MCSE
-
calc_relative() - Calculate relative performance criteria and MCSE
-
calc_relative_var() - Calculate jack-knife Monte Carlo SE for variance estimators
-
calc_rejection() - Calculate rejection rate and MCSE
-
calc_coverage() - Calculate confidence interval coverage, width and MCSE
Simulating bootstrap processes
Specialized functions for simulations involving bootstrap hypothesis tests or bootstrap confidence intervals
-
bootstrap_pvals() - Calculate one or multiple bootstrap p-values
-
bootstrap_CIs() - Calculate one or multiple bootstrap confidence intervals
-
extrapolate_rejection() - Extrapolate coverage and width using sub-sampled bootstrap confidence intervals.
-
extrapolate_coverage() - Extrapolate coverage and width using sub-sampled bootstrap confidence intervals.
-
create_skeleton() - Open a simulation skeleton
-
repeat_and_stack() - Repeat an expression multiple times and (optionally) stack the results.
-
bundle_sim() - Bundle functions into a simulation driver function
-
evaluate_by_row() - Evaluate a simulation function on each row of a data frame or tibble
-
Tipton_Pusto - Results for Figure 2 of Tipton & Pustejovsky (2015)
-
alpha_res - Cronbach's alpha simulation results
-
t_res - t-test simulation results
-
welch_res - Welch t-test simulation results