Calculate jack-knife Monte Carlo SE for variance estimators
Source:R/calc_relative_var.R
calc_relative_var.Rd
Calculates relative bias, mean squared error (relative mse), and root mean squared error (relative rmse) of variance estimators. The function also calculates the associated jack-knife Monte Carlo standard errors.
Usage
calc_relative_var(
data,
estimates,
var_estimates,
criteria = c("relative bias", "relative mse", "relative rmse"),
winz = Inf,
var_winz = winz
)
Arguments
- data
data frame or tibble containing the simulation results.
- estimates
vector or name of column from
data
containing point estimates.- var_estimates
vector or name of column from
data
containing variance estimates for point estimator inestimates
.- criteria
character or character vector indicating the performance criteria to be calculated, with possible options
"relative bias"
,"relative mse"
, and"relative rmse"
.- winz
numeric value for winsorization constant. If set to a finite value, estimates will be winsorized at the constant multiple of the inter-quartile range below the 25th percentile or above the 75th percentile of the distribution. For instance, setting
winz = 3
will truncate estimates that fall below P25 - 3 * IQR or above P75 + 3 * IQR.- var_winz
numeric value for winsorization constant for the variance estimates. If set to a finite value, variance estimates will be winsorized at the constant multiple of the inter-quartile range below the 25th percentile or above the 75th percentile of the distribution. For instance, setting
var_winz = 3
will truncate variance estimates that fall below P25 - 3 * IQR or above P75 + 3 * IQR. By defaultvar_winz
is set to the same constant aswinsorize
.
Value
A tibble containing the number of simulation iterations, performance criteria estimate(s) and the associated MCSE.
Examples
calc_relative_var(data = alpha_res, estimates = A, var_estimates = Var_A)
#> # A tibble: 1 × 7
#> K_relvar rel_bias_var rel_bias_var_mcse rel_mse_var rel_mse_var_mcse
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1000 0.440 0.101 0.726 0.337
#> # ℹ 2 more variables: rel_rmse_var <dbl>, rel_rmse_var_mcse <dbl>